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Abstract

Obesity is a growing problem that threatens the health and welfare of a large proportion of the human population. The n-3 polyunsaturated fatty acids
(PUFA) are dietary factors that have potential to facilitate reduction in body fat deposition and improve obesity-induced metabolic syndromes. The n-3 PUFA up-
regulate several inflammation molecules including serum amyloid A (SAA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in hepatocytes and
adipocytes. Actions of these inflammation mediators resemble those of n-3 PUFA in the modulation of many lipid metabolism-related genes. For instance, they
both suppress expressions of perilipin, sterol regulatory element binding protein-1 (SREBP-1) and lipoprotein lipase (LPL) to induce lipolysis and reduce
lipogenesis. This review will connect these direct or indirect regulating pathways between n-3 PUFA, inflammation mediators, lipid metabolism-related genes
and body fat reduction. A thorough knowledge of these regulatory mechanisms will lead us to better utilization of n-3 PUFA to reduce lipid deposition in the liver
and other tissues, therefore presenting an opportunity for developing new strategies to treat obesity.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Obesity is a worldwide problem. It is tightly associated with
dyslipidemia, type 2 diabetes and cardiovascular diseases, all posing
huge threats to human health. The n-3 polyunsaturated fatty acids
(PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA), are known as anti-obesity factors. Fish oil containing high
concentrations of DHA and EPA is considered a good source of these
n-3 PUFA. Weight loss and decreased fat deposition are observed in
mice fed a diet containing a high concentration of DHA and EPA [1].
Dietary n-3 PUFA supplementation combined with very low calorie
intake enhances weight loss in obese women [2]. The n-3 PUFA
mainly exert their fat-lowering effect through extensive regulation of
lipid metabolism by inhibiting lipogenesis, promoting lipolysis and
fatty acid oxidation, and suppressing preadipocyte differentiation
(Table 1). We will emphasize on discussing the roles of n-3 PUFA in
modulating lipid metabolism and new findings that link n-3 PUFA
with inflammatory factors that modulate lipolysis and other aspects
of lipid metabolism to reduce fat deposition in the body.

2. Effect of n-3 PUFA on lipid metabolism

The major effects of n-3 PUFA on modulating lipid metabolism are
to promote lipolysis and fatty acid oxidation and to inhibit
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lipogenesis. Treatments with DHA increase glycerol release, an
indicator of lipolysis in murine and human adipocytes [10,12].
Treatments with EPA activate cAMP-dependent protein kinase A
(PKA) to promote lipolysis [13,14]. The effects of n-3 PUFA on lipolysis
may be mediated through perilipin and/or hormone-sensitive lipase
(HSL). Perilipin coats the intracellular lipid droplets in adipocytes.
Decreased perilipin increases the access of HSL to hydrolyze lipid
droplets and thus leads to increased lipolysis [15]. Perilipin knockout
mice exhibit increased basal lipolysis and resistance to diet-induced
obesity [16,17]. Mutation of the PKA phosphorylation sites on
perilipin terminates the PKA-induced lipolytic response [18]. The
intracellular lipase, HSL, hydrolyzes diacylglycerols, triacylglycerols
and acyl esters of cholesterol, steroids and retinoic acid [19]. The
stimulation of several hormone receptors such as β-adrenergic
receptors can increase intracellular cAMP levels to activate PKA
signaling that in turn phosphorylates and activates HSL [20].
Phosphorylation of perilipin by PKA is also required for HSL in
stimulating its translocation from the cytosol to the lipid droplets to
induce its lipolytic activities [21,22]. At least part of the n-3 PUFA-
induced increase in lipolysis appears to result from the n-3 PUFA
activation of PKA that in turn phosphorylates perilipin and HSL
[18,23]. The PUFA, especially DHA, can also enhance lipolysis through
increasing the expression of HSL and decreasing the expression of
perilipin [10,11].

Activity of the anabolic-associated lipase, lipoprotein lipase (LPL),
is modulated by n-3 PUFA. The LPL enzyme is located on the
endothelial layer of capillaries in the muscle and adipose tissues. It
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Table 1
Effect of n-3 PUFAs on lipid metabolism-related genes

Categories Genes Expression or activity Reference

Lipogenesis Stearoyl CoA desaturase 1 ↓ [3]
Fatty acid synthase ↓ [3,4]
Acetyl CoA carboxylase ↓ [4,5]

Fatty acid
oxidation

Carnitine palmitoyl
transferase-1

↑ [6]

Acyl CoA oxidase ↑ [6–8]
Ketoacyl-CoA thiolase ↑ [7,8]
Enoyl-CoA hydratase ↑ [7]

Fatty acid transport Muscle lipoprotein lipase ↑ [9]
Adipocyte lipoprotein lipase ↓ [9,10]

Lipolysis Hormone-sensitive lipase ↑ [10,11]
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hydrolyzes chylomicron- and VLDL-triacylglycerol to release fatty
acids. Dietary fish oil supplementation enhances muscle LPL activity,
but reduces adipocyte LPL activity [9]. The altered LPL activities are
accompanied by decreased body fat and plasma triacylglycerol
concentration in fish oil-fed rats, suggesting that triacyglycerol
utilization is changed from storage in adipocytes to oxidation in
muscles after the high n-3 PUFA treatment [9]. Mitochondrial and
peroxisomal fatty acid oxidation rates in 3T3-L1 adipocytes and fish
oil-fed rats are increased by n-3 PUFA [6,7]. These functions of n-3
PUFA are mediated by increasing the oxidation-related enzyme
activities including carnitine palmitoyl transferase-1, acyl CoA
oxidase, enoyl-CoA hydratase and ketoacyl-CoA thiolase [6,7].
Suppression of the expression of the transcription factor, sterol
regulatory element binding protein-1 (SREBP-1), by n-3 PUFA leads to
decreased expression of lipogenic genes such as fatty acid synthase,
acetyl-CoA carboxylase (ACC) and stearoyl-CoA desaturase-1 in fish
oil-fed mice and rats [3,4]. The n-3 PUFA regulate SREBP-1 expression
via an ERK1/2-dependent pathway [24] and through PKA activation
[25]. The n-3 PUFA transiently induce ERK phosphorylation, and the
addition of ERK inhibitors negates the DHA-induced decrease in
SREBP-1 expression in primary rat hepatocytes [24]. The DHA-
mediated ERK activations are related to elevated reactive oxygen
species (ROS) because DHA-induced ROS expressions facilitate ERK
phosphorylation [26]. Activation of PKA suppresses SREBP-1 expres-
sion through phosphorylation of liver X receptor (LXR), thus
inhibiting the LXR stimulation of transcription of SREBP-1 [25]. The
PKA-mediated phosphorylation of SREBP-1 affects SREBP-1 binding to
DNA to further inhibit lipogenesis [27].

In addition to the aforementioned metabolic effects, n-3 PUFA
alter adipocyte differentiation. The reduced lipid accumulation and
glycerol-3-phosphate dehydrogenase activities resulting from DHA
treatments indicate that DHA reduces the differentiation of 3T3-L1
preadipocytes to adipocytes [12]. The SREBP-1 mRNA is also
decreased by DHA in porcine adipocytes [28,29]. Higher concentra-
tions of EPA and DHA induce apoptosis of adipocytes and subse-
quently reduce adipogenesis [12,30]. The suppression of cell survival
signaling pathways such as the reduction in Akt phosphorylation and
NF-κB DNA binding activity may contribute to n-3 PUFA-mediated
apoptosis [31]. These apoptotic effects of n-3 PUFA could result in
decreased adipose accumulation and therefore reduce obesity.
3. Inflammation mediators involved in n-3 PUFA-regulated
lipid metabolism

Inflammation is a complex reaction of vascular tissues in response
to harmful stimuli, such as infection, cell injury or toxin exposure.
Inflammation involves extravascular accumulation of plasma pro-
teins and recruitment of leukocytes from the circulation to the site of
infection. Once macrophages, endothelial cells and mastocytes are
activated by stimulating agents at the site of infection, they release
inflammatory mediators responsible for the signs of inflammation.
These inflammatory mediators include complements, chemokines,
cytokines, leukotriens, prostaglandins and other lipid mediators [32].
Pro-inflammatory and anti-inflammatory effects of n-3 PUFA treat-
ments can both be observed. Recently, inflammation mediators such
as serum amyloid A (SAA), tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6) have been found to be associated with obesity
development [33,34]. Their expressions are mildly elevated upon the
onset of obesity. Numerous data also suggest that these inflamma-
tion mediators are involved in regulating lipid metabolism and
therefore affect lipid accumulation. For example, they can mediate
the effect of DHA to increase lipolysis and reduce lipid accumulation
[35,36]. Here, we describe the involvement of these factors in lipid
metabolism and obesity.

3.1. Serum amyloid A

SAA is an apolipoprotein mainly synthesized in mammalian liver.
SAA can be divided into constitutive members and acute-phase
members (A-SAA) in response to tissue damage and inflammation.
The A-SAA are induced primarily by interleukin-1 (IL-1), TNF-α and
IL-6 through the down-regulation of NF-κB and CCAAT/enhancer-
binding proteins (C/EBP) whose binding elements have been located
and characterized in A-SAA promoters [37]. There are about two- to
sixfold higher increments of plasma A-SAA levels in obese than in
lean children and adults [38,39]. SAA is known as a marker for obesity
because its expression is well correlated with the degree of obesity
[40]. The discoveries of the involvement of SAA in modifying lipid
metabolism suggest that SAA functions in obesity through several
aspects. Firstly, SAA reduces lipogenesis. Several lipogenic enzymes
including ACC1, LPL and adipocyte fatty acid binding protein (aP2)
are reduced in adipocytes by the SAA treatment [10,35]. Secondly,
SAA increases lipolysis in porcine and human adipocytes [10,35,36].
SAA can activate NF-κB by increasing IκBα degradation [41–43],
resulting in a proinflammatory cytokine-induced lipolysis [44,45].
SAA also enhances productions of lipolysis-promoting cytokines such
as IL-6 through the induction of NF-κB [42]. Therefore, SAA may
facilitate lipolysis via NF-κB and its target genes. In addition, SAA-
induced increment of lipolysis can be attributed to the reduction of
perilipin as well [10,35].

3.2. TNF-α and IL-6

TNF-α and IL-6 secreted from macrophages and monocytes
during infection play important roles in immunity. In addition to
immune cells, TNF-α and IL-6 are secreted by adipose tissues or
adipocytes, suggesting potential regulatory roles in lipid metabo-
lism [46,47]. Treatments of TNF-α decrease expression and activity
of LPL and also increase lipolysis to reduce lipid accumulation in
adipocytes [45,48]. Activation of PKA by TNF-α leads to increased
phosphorylation of perilipin to increase lipolysis [49]. In adipocytes,
lipolysis is enhanced by TNF-α through down-regulation of cAMP-
phosphodiesterase 3B to increase cAMP concentration and, conse-
quently, to intensify PKA signaling [48,49]. The lipolytic activities of
TNF-α are partially attributed to the PKA-mediated phosphorylation
of perilipin and HSL. Other mechanisms are also involved in TNF-α-
mediated lipolysis. For instance, perilipin expression is decreased by
stimulation of TNF-α via p44/42 and c-jun-NH2-terminal kinase
[50]. Lipolysis promoted by TNF-α is reduced in the presence of NF-
κB inhibitors, suggesting that NF-κB is essential in TNF-α-regulated
lipolysis [45]. The enhancing effect of TNF-α in lipolysis can be
blocked by overexpression of perilipin, suggesting that perilipin
participates in TNF-α-induced lipolysis [51]. Similar to n-3 PUFA,
TNF-α suppresses SREBP-1 expression through negative modulation
of LXR and two LXL coactivators, peroxisome proliferator-activated
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receptor γ coactivator 1α (PGC1α) and steroid receptor coactiva-
tor-2 [52,53].

The TNF-α treatment also decreases adipocyte cell numbers
through the modulation of proliferation and differentiation. For
example, TNF-α induces apoptosis in both preadipocytes and mature
adipocytes [54] and blocks human preadipocyte differentiation [55].
The inhibitory effect of TNF-α on adipogenesis is through stabilizing
antiadipogenic β-catenin and suppressing several adipogenic tran-
scription factors such as PPARγ and C/EBPα [56].

In summary, SAA, TNF-α and IL-6 are involved in mediating n-3
PUFA effects on lipid metabolism (Fig. 1). For instance, the parallel
effects of n-3 PUFA, SAA and TNF-α to decrease expression of LPL,
SREBP-1 and perilipin indicate the tight connections of these
factors. Accordingly, we speculate that SAA, TNF-α and IL-6 are
potential candidates to mediate the n-3 PUFA-induced reduction in
lipid accumulation.

4. Involvement of n-3 PUFA in inflammatory responses

4.1. Pro-inflammatory effects of n-3 PUFA

Because DHA and EPA enhance TNF-α and IL-6 secretion in
macrophages [57–59], and dietary fish oil supplementation increases
serum TNF-α concentration in response to endotoxin challenges
[59], n-3 PUFA are regarded as pro-inflammatory factors. In addition
Fig. 1. Proposed mechanisms by which PUFA reduce lipid accumulation. AC, Adenylyl cyclase;
dependent protein kinase A; ERK, extracellular signal-regulated kinases; HSL, hormone-sensit
tumor necrosis factor-α; IL-6, interleukin-6; NF-κB, nuclear factor-κB.
to macrophages, DHA and EPA treatments also increase TNF-α,
IL-1α, IL-6 and SAA expression in adipocytes, keratinocytes,
splenocytes and hepatocytes [10,35,60–62]. The n-3 PUFA decrease
production of prostaglandin E2 (PGE2) [63–65], a TNF-α suppressor
[66–68]. The elevated TNF-α and IL-6 production induced by n-3
PUFA is inversely related to the PGE2 concentration [57,69],
suggesting that n-3 PUFA increase these pro-inflammatory media-
tors through regulation of PGE2. Recent data show that DHA up-
regulates the expression of SAA through modulation of C/EBPβ by
activating PKA [70]. suggesting another possibility of n-3 PUFA-
induced pro-inflammatory response via increased SAA expressions.
Although there are several potential n-3 PUFA-mediated pro-
inflammatory effects, these effects need to be quantitatively and
accurately evaluated.

4.2. Anti-inflammatory mechanism of n-3 PUFA

Numerous anti-inflammatory responses to n-3 PUFA have also
been reported. In monocytes, EPA and DHA inhibit LPS-induced
cytokine expression, including IL-1β, IL-6 and TNF-α [71,72].
Mononuclear cells from humans receiving supplemental EPA+DHA
or fish oil express less TNF-α, IL-1β and IL-6 [73,74]. Adipocytes
treated with DHA express more anti-inflammatory IL-10 compared
to untreated cells [75]. The anti-inflammatory effect of n-3 PUFA
mainly results from suppression of NF-κB [76]. In human THP-1
PDE, phosphodiesterase; TNFR, TNF-α receptors; TLR, Toll-like receptors; PKA, cAMP-
ive lipase; C/EBPβ, CCAAT/enhancer-binding protein β; SAA, serum amyloid A; TNF-α,
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macrophages, DHA and EPA treatments cause less nuclear p65 and
phosphorylated cytoplasmic IκB-α, leading to the reduction of LPS-
induced NF-κB DNA-binding activities and TNF-α expression [71,72].
DHA and its metabolites inhibit NF-κB activation via the modulations
on IκB kinase, leading to reduced phosphorylated IκB-α [77]. It was
also reported that suppression of glutathione synthesis attenuates
the n-3 PUFA-induced inhibition on NF-κB activation [78], suggesting
that the anti-oxidative activity of n-3 PUFA may be involved in
the process.

Peroxisome proliferator-activated receptors (PPAR) are also
involved in n-3 PUFA-controlled negative regulation of NF-κB. PPAR
are members of the nuclear receptor family of ligand-dependent
transcription factors that regulate diverse gene expression, and EPA
and DHA are putative natural ligands for PPAR [79]. Addition of PPARγ
antagonists retards n-3 PUFA-mediated suppression of LPS-induced
NF-κB activation, and overexpression of PPARγ reinforces the induced
suppression, indicating that the anti-inflammatory effect of n-3 PUFA
is PPARγ dependent [80]. The inhibitory effect of n-3 PUFA on NF-κB
activation cannot be observed in PPARα-deficient cells [81], suggest-
ing the importance of PPARα in mediating n-3 PUFA effects. The PPAR
may interfere with the activating effect of NF-κB and activator
protein-1 (AP-1) by direct protein–protein interaction to transrepress
the expression of proinflammatory genes [82]. These observations
lead us to conclude that n-3 PUFA could be an anti-inflammatory
factor under many circumstances.

4.3. Anti- vs. pro-inflammatory responses

Saturated long-chain fatty acids activate Toll-like receptor signa-
ling to increase expression of NF-κB and cytokine production in
murine adipocytes [83,84] and macrophages [83,85,86], leading to
inflammatory responses. However, the inflammatory property of n-3
PUFA is complicated and often oversimplified. The conflicting results
of pro- or anti-inflammatory effects of n-3 PUFAs are related to
different states (inflammatory vs. resident) of cells [87] or different
cell types [71,88]. The immunomodulatory effect of n-3 PUFA is also
influenced by polymorphisms in cytokine genes [89,90]. Sometimes
the double-edged pro- and anti-inflammatory effects of n-3 PUFA
appear at the same time. Fish oil increases both the pro-inflammatory
cytokine, TNF-α, and the anti-inflammatory cytokine, interleukin-10,
in splenocytes [91]. Despite the proinflammatory properties, the n-3
PUFA have either inhibitory or no impact on human systematic
inflammation profiles. In humans, n-3 PUFA concentrations are
negatively correlated with several pro-inflammatory biomarkers
including C-reactive protein, IL-6 and TNF-α, and positively correlat-
Table 2
Relative response of inflammation mediators to different stimuli

Classification Intervention Biomarkers of inflammation Subject

Acute-phase inflammation LPS TNF-α Healthy
Mice

IL-6 Healthy
Mice

IL-1 β Healthy
Mice

IFN-γ Mice
SAA Mice

n-3 PUFA Fish oil TNF-α Mice
DHA or EPA Rat
DHA Human
DHA or EPA IL-6 Rat
DHA Human
DHA SAA Human

Porcine
ed with anti-inflammatory markers, such as TGF-β and IL-10 [92–94].
However, there are reports that supplementation with EPA and DHA
has no effect on these cytokines [95–97]. It seems that the pro-
inflammatory effect of n-3 PUFA is localized to some cell types or
limited to selected cytokines. Regardless, the magnitude for the
increase in inflammation molecules produced by n-3 PUFA is small
compared to endotoxin-induced alteration in inflammation mole-
cules (Table 2). The expression of SAA increases 30- to 500-fold in
response to tissue damage and inflammation [102–104], whereas
DHA treatments increase SAA expression only two- to fivefold in
hepatocytes and adipocytes [10,35,60]. The IL-6 and TNF-α expres-
sions increase two- to five-fold upon the treatment of macrophages
with n-3 PUFA [57,105], whereas an acute inflammation response
increases the expression of these cytokines to 50-fold [98,99].

The stimulatory effect of DHA on these pro-inflammatory proteins
is relatively low compared with acute inflammation. However, the
mildly and locally elevated TNF-α and SAA mRNA after n-3 PUFA
treatment are similar to the low-grade inflammation state found in
obesity [106]. The TNF-α mRNA expression is elevated five- or
10-fold, and protein expression is increased twofold in the adipose
tissue from the obese compared to the lean mice [107]. These obese
mice also have a 40% higher plasma TNF-α concentration [107].
Similar results are found in humans, wherein there is a twofold
increase in TNF-α mRNA and protein in adipose tissue from obese
compared to lean women [34]. In addition to TNF-α, plasma IL-6
concentration is three- to fivefold greater in obese compared to
normal humans [108,109]. The plasma SAA concentration increases
two- to sixfold in the obese, and SAA mRNA in adipose tissue from
obese humans decreases about 50% after weight loss [38,110].

The chronic low-grade inflammation state in obesity is believed to
participate in the pathogenesis of insulin resistance, leading to the
metabolic syndrome [106]. Despite mildly increased TNF-α and SAA
expression in obese animals, the n-3 PUFA do not cause insulin
resistance; on the contrary, n-3 PUFA supplementation improves
insulin resistance in rats, mice and humans [111–113]. The insulin-
sensitizing effect of the n-3 PUFA may come from its positive
regulation of glucose and lipid metabolism [114]. The high-fructose
diet-induced elevation of blood glucose and insulin is reduced by fish
oil supplementation, thus reducing insulin resistance [115]. The
suppressive effect of n-3 PUFA on adiposity is assumed to be
associatedwith the amelioration of insulin resistance. Hyperlipidemia
in obesity often causes increased plasma free-fatty-acid level which
results in insulin resistance via the activation of PKC θ and
subsequently increased IRS-1 phosphorylation at Ser 307 [116,117].
The hypotriglyceridemic property of n-3 PUFA can therefore partially
Tissue/cells Detected product Change Ref.

men Plasma Protein 50-fold [98]
Liver mRNA 30-fold [99]

human Whole blood Protein 9-fold [100]
Liver mRNA 50-fold [99]

human Whole blood Protein 10-fold [100]
Liver mRNA 200-fold [99]
Liver mRNA 50-fold [101]
Serum Protein N100-fold [102]
Liver mRNA N500-fold [103,104]
Macrophage mRNA or protein 2.3- or 2-fold [58,105]
Macrophages 21% or 15% [57]
Adipocytes mRNA 5-fold [10]
Macrophages 69% or 40 % [57]
Adipocytes mRNA 12-fold [10]
Adipocytes mRNA 3-fold [10]
Hepatocytes mRNA 3-fold [35]
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explain its beneficial effect on insulin sensitivity. Moreover, the n-3
PUFA-induced improvement in insulin sensitivity is absent in PPARα
knockout mice [113], indicating that n-3 PUFA modulate insulin
sensitivity via a PPARα-dependent pathway. In addition, the up-
regulation of adiponectin by n-3 PUFA changes insulin sensitivity. The
crucial role of adiponectin in insulin actions is evidenced in
adiponectin knockout mice with severe insulin resistance compared
to wild-type mice [118,119]. Supplementation with n-3 PUFA
increases adiponectin expression and simultaneously improves
insulin resistance in rats fed a high-sucrose diet [120]. This result
suggests that adiponectin may be responsible for the n-3 PUFA-
mediated ameliorations of insulin resistance.

The mildly elevated proinflammmatory proteins induced by n-3
PUFA exert no obvious harmful effects. Therefore, we speculate that
the slight increase in SAA, IL-6, TNF-α and adiponectin in response to
n-3 PUFAmay be beneficial because they increase the lipolytic activity
and decrease lipogenic activity to enhance the utilization and to
decrease the deposition of body fat.

5. Conclusion

The n-3 PUFA up-regulate the expression of inflammation
mediators, SAA1, IL-6 and TNF-α, by modifying PKA activity, the
functions of PPAR, or PGE2 to mediate lipolytic effects. Even though
these inflammation mediators are increased after treatment with n-
3 PUFA, the increment of these factors is much less than that
observed after an inflammatory response induced by LPS. Therefore,
to characterize n-3 PUFA as a pro-inflammatory factor is not
appropriate when the concentration in the diet is not extraordinarily
high. Regardless, n-3 PUFA can induce lipolysis and reduce
lipogenesis and such functions suggest new insights whereby
PUFA may be used to reduce lipid deposition in the liver and
other tissues, therefore presenting an opportunity for developing
new strategies to treat obesity.
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